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Abstract. Image compression algorithms should be evaluated by at least two im-
portant criteria: the compression rate and the quality of the reconstructed images.
Other factors which may be considered are compression/decompression times,
the memory requirements, etc. This paper shows the results obtained in a per-
formance comparison between six lossy compression algorithms on texture im-
ages. We measure the quality of the reconstructed image and the compression/
decompression process time at moderate and low bit rate compression ratios. The
results shown allow the selection of an algorithm as a function of image texture,
in future we intend to measure other image components such as edges and edge-
associated detail to have the possibility of recommending a compression algo-
rithm that adapts to any image that we need to compress,

1. Introduction

Digital images are much used in several disciplines of computer science besides Digital
Image Processing (DIP). A great quantity of the information that human beings use
daily is in a digital form, digital images need a great amount of storage space and more
bandwidth and time to transmit it for example via Internet. A possible solution to han-
dle this data and to use less storage space and time to transmit is to use image compres-
sion.

The goal of image compression is to reduce the bit rate for signal transmission or
storage while maintaining an acceptable image quality for various purposes [1]. The
compression process can be made with or without loss of information. In lossless
methods the decompressed data are an exact copy of the originals, whereas in the lossy
methods, the decompressed data are an approximation of the originals.

Image compression methods have been evaluated on the basis of minimizing an ob-
Jective distortion measure at a given level of data compression [2]. At low bit rates an
image can be distorted or present artifacts in components such as edges or textures and
it becomes imperative to measure the performance of a particular coder in order to
know if there exists a balance between the quality of the reconstructed image and the
compression factor obtained. which is a suitable criterion in lossy compression coders.

In the literature there are a few works [3], [4]. [5] that attempt to measure the per-
formance of a compression algorithms in order to try to recommend an adequate algo-
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rithm for the image that needs to be compressed. The difference between this paper and
others reported in the literature is that we present the first and novel results obtained in
a comparison made using the very important information of a texture cue in an image.
We made the comparison by measuring the time used to compress/ decompress an
image and the quality of the reconstructed image at moderate and low bit rate. This

study was made as a base work in order to design in the future a compression coder

with feature preserving (textures, edges, and edge associated detail).
In the following sections we present a brief description of the proposed model and

the tests and results obtained from the compression algorithms comparison.

2. Proposed Model

All the objects in the real world have a surface that can reflect Iighl iq a way that de-
pends on the structure of the surface. That manner of reflecting light is known as the
visual texture of the objects and gives information about the material that the object is
composed of (wood, water, steel. wool, etc) and some properties (roughness, regular-
ity, brightness, homogeneity. etc) that inform about the state (wet, clean, liquid, etc) of
the object.

An image gives us the sensation of texture by the repetition of similar patterns, in
(6] Julez gives a definition of texture: Textures are composed by a small number of
similar types of atoms called textons, that are repeated in almost regular or random
position and orientation.

Several authors agree that the three most important dimensions for texture percep-
tion by human beings are: periodicity. randomness and directionality [7]. [8]. A texture
image can be classified in onc of the three mentioned types and one can use the Fourier
spectrum to help the task of classification [7].

A rough description of the Fourier spectrum for cach texture class is:

a) Periodic textures: The spectrum consists of significant peaks scattering out

regularly in some directions.

b) Directional fextures: In the Fourier spectrum the directionality will be pre-

served.

¢) Random textures: The distribution of the responses of the spectrum is not re-

stricted to certain directions.

In this paper we measure the performance of lossy image compression algorithms
on each of the three classes of textures with the goal of investigating which compressor
has the best performance for each class in order to offer the possibility of recommend-
ing a compression algorithm for the particular texture information of an image.

The proposed model has six phases, first we select the database of image textures,
second we compute the Fourier spectrum, third we classify the image in one of the
three texture classes. fourth the image is compressed/decompressed with six lossy
image coders. fifth the error between original and reconstructed image and the time
used to compress/decompress are measured; and finally we make comparisons between
the images. Figure 1 shows the phases for the proposed model.
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Fig. 1. The six modules of the proposed model.

2.1. Image Selection, Fourier Spectrum Computing and Texture Classification

We obtain the texture image database from the Brodatz album [9]. The album has be-
come a standard for evaluating texture algorithms and consists of 112 texture images
belonging to different classes. We select five images for each texture class for a total of
15 texture images that were used for the tests in this paper. The selection of the tex-
tures for each class was made by computing the Fast Fourier Transform (FFT) equation
1 and the Fourier Spectrum (FS), equation 2.

M-l N-]

F(p,q)= Zf(m.n)e"‘:'”“’e"“"”v"”" (l)

m=0 n=0

|F(11,v)|=[Rz(u,v)+lz(u,v)]!z )

By means of visual analysis of the FS we are ensured that the images selected be-
long to the texture class attributed to them. The selected images are greyscale images
(256 x 256) which nced a storage space of 66Kb (65536 bits). After the analysis five
directional textures were selected showed in the first row of figure 2, the second row
shows their correspondent Fourier Spectra.

0

Fig. 2. Directional textures. a) D51 raffia woven with cotton threads, b) D106 cheese-
cloth, ¢) D49 Straw screening. d) D15 straw and e) D105 cheesecloth.

d) )
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The five periodic textures selected are

row shows their Fourier Spectra. The five ra
first row of figure 4. the second row shows their Fourier Spectra.

)

Fig. 3. Periodic textures. a) D1 woven aluminium wir
D55 straw matting. d) D56 straw matting and ¢) D101 cane.

¢, b) D52 oriental straw cloth, ¢)

a)
4. Random textures. a) D2 fieldstone, b) D9 grass lawn. c) D86 ceiling tile, d) D62

european marble and ¢) D7 fieldstone D2.

Fig.

2.2. Compress/Decompress Process

Once we have the textures classified adequately, the compress/decompress phase of the

images is carried out. We select six lossy image compression algorithms: Discrete
Cosine Transform (DCT) [10], Haar Wavelet Transform (HWT) [11], Singular Value
Decomposition Transform (SVDT) [10], Daubechies 4 Wavelet Tranform (D4WT)
[11]. Embedded Zerotree Wavelet (EZW) [12] and Set Partitioning In Hierarchical

Trees (SPIHT) [13]. These algorithms were programmed as proposed in the cited ref-
erences and were set 1o obtain similar bit rates so that all coders have the same condi-
tions and we avoid skewing the results.

Compression standards such as JPEG and JPEG2000 were not used because this
work intends to serve as the basis of a future image coder with feature preservation
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with respect 1o a target pattern recognition algorithm. A disadvantage of standards is
that the only reference is human vision and they attempt to equally preserve the quality
of any image. Thus they can not be easily manipulated for tests cases, and at very low
bit rates the images obtained are corrupted by artifacts, and image features such as
edges may be practically destroyed.

The first compress/decompress process was made with a bit rate of 0.5 with the re-
sulting images using 33Kb (32768 bits). A ficr the process we have a total of 90 texture
images (30 in cach class). The second process was made using a bit rate of 0.1, with
resulting images using 6Kb (6554 bits). Its purpose was to find the algorithm with the
best performance in our worst case scenario. Here we again obtain 90 texture images.

2.3. Measuring the Errors and Time

After the lossy compress/decompress process, it is important to measure the difference
between the original image (/) and the decompressed image (/°) in order 1o determine
the quality of the reconstructed image [14]. For this purpose we use four well known
objective measures: Mean Square Error (MSE eq. 3), Peak Signal to Noise Ratio
(PSNR eq. 4) and Norm 2 and Frobenius relative errors (eq 5).

l M N : >
MSE= %" >[1(x, )~ I'(x,p)] G)
MN<F<
PSNR =10*log,,(255/ sqrt(MSE)) )
I1-1I_
Nl = 2.F %)
I 2. F

For the measurement of time we implement a function in every algorithm to add up
the time in seconds needed to complete the process of compressing/decompressing an
image of a texture. To avoid skewing the results, all codecs were programmed by the
same programmer, in C++ Builder, and exccuted in a Windows XP environment run-
ning on Intel Pentium IV processor at 2.3 GHz. with 256 MB of RAM memory.

2.4. Lossy Image Compression Algorithms Comparisons

In this stage it is important to analyze which texture of each class represents more
problems for the compression algorithms; that is, which texture is better reconstructed,
and which texture has poor reconstruction for each algorithm.

On the other hand. it is important to analyze the performance of the coders regard-
ing execution time, it is desirable that the process have a balance between the quality
of the reconstructed image and the time used to compress/decompress an image.

With these two measures we can compare the performance of the algorithms for
cach texture class and then give a recommendation of the best algorithm,
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3. Tests and Results

We have two test groups, reconstructed images obtained from: a) 0.5 bit rate and b) 0.1
bit rate as pointed out in section 2.2. We have 15 texture images on which we apply six
compression algorithms to obtain a total of 90 images for case a and 90 images for
case b. for a total of 180 texture images.

For each image we compute the four error measures proposed in section 2.3 and the
time used for the compress/decompress process of an image. As a result, we have five
measures for cach of the 180 images. Because of the limited space of this paper we
only show the mean and the standard deviation results obtained for each texture class
for cach bit rate. Figure 5 shows an example of different coders reconstructed images:
the first row show 0.5 bit rate images and second row 0.1 bit rate images.

Fig. 5. Reconstructed texture images. a) HWT D105, b) EZW D62, ¢) DCT D55, d) DAWT D15,
¢) SPIHT D9.

Table 1 shows the results for the mean (upper half) and for the standard deviation
(lower half) for directional textures, table 2 the results for periodic textures and table 3
the results for random textures all with bit rate of 0.5.

Table 1. Dircctional textures average and standard deviation results for bit rate 0.5.

Average
Compression . Time in
a’;’;’a vl MSE PSNR Frobenius Norm2 bt
DCT 191 6071 26.6042 0.0919 00568 1.51
HwT 1616.7638 16.4300 0.2976 0.2096 2.102
SVDT | 147.5686 28.0624 0.0789 0.0364 6.0028
DIWT 427 6316 230812 0.1395 00713 3.31
EZW 83.0009 29.5485 0.0642 0.0321 11.8
SPIHT 630.0550 21.2940 0.1693 0.0474 7.92
Standard deviation
DCT 154 6206 3.8576 0.0279 0.0402 0.0761
HWT 595.6014 2.3081 0.0896 0.1115 0.0634
SVDT 172 6100 3 6981 0.0319 00127 02633
DLAWT 303 4030 40181 0 0444 0 0470 0 0894
EZIV 57.7073 2.3492 0.0138 0.0061 0.2121
SPIHT 5054763 3.5089 0.0509 0.0357 0.1303
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Table 2. Periodic textures average and standard deviation results for bit rate 0.5.

Average
Coal;::";hs‘:." MSE PSNR | Frobemius | Normz f:,‘d':
DCT 248.5560 25.6067 0.1230 | 00837 | 146
HWT 2341.2887 15.3872 0.3884 0.3312 2186
SVDT 101 3690 285201 | 0.0822 0.0647 5978
DIWT 478.2486 22.0153 01682 | 01150 | 3255
EZW 87.9482 25.020 0.1282 0.0940 11.722
SPIHT 659.4961 20.5227 0.1950 0.0745 7.98
Standard deviaion
DCT 178.8439 44860 0.0843 0.0798 0.1534
HWT 1674.9572 32333 0.2936 0.3317 0.2745
SVDT 463382 23249 0.0505 0.0453 0.2278
DIWT 315 3719 2 6695 0 0850 00822 03582
EZW 24333408 4.4780 01129 | 01154 | 04748
SPIHT 399 1214 24317 0 0807 00388 07049

Table 3. Random textures average and standard deviation results for bit rate 0.5.

Average
C“q"’gm:’” MSE PSNR Frobenius | Norm2 g;j'z
DCT 221.7494 253617 01059 00466 154
HWT 1490.8119 166299 | 02816 | 01609 | 2326
SVDT 2595.1127 238196 01241 00378 624
DIWT 473.9257 215967 0.1579 0.0655 3474
EZIV 152.4267 27.0863 0.0879 0.0319 12.004
SPIHT 558.3568 210256 01657 | 0.0259 | 832
Standard deviation
DCT 138.6217 2.7676 00461 00228 0.0674
HWT 543 3977 1.5999 01047 0.1304 0.2511
SVDT 139.6775 20516 0.0475 0.0276 0.2302
DAWT 160.3059 1.6038 0.0481 0.0304 0.4407
EZIV 81.4840 3.2836 00397 [ 00154 | 0.5020 _
SPIAT 270 5800 19376 00586 0 0080 04919

For the results shown in tables 1. 2 and 3 we can give the following comments: For
the three texture classes, and taking into account the quality of the reconstructed image
(error measures), the EZW algorithm has the best performance. This can be seen, for
example, in that MSE always has the smallest value and the PSNR is always the larg-
est, which indicates that the images are quite close to the originals.

The next best compressor is DCT. which is demonstrated by the Frobenius and
Norm2 measures, which are just above those for EZW. After DCT, we obtained the
best performance with SPIHT and SVDT algorithms. in that order. The poorest per-
formance is presented in HWT: for example in the MSE we observe that the image is
reconstructed with a large difference for the three texture classes. The second worst
algorithm is D4WT, it is only superior for reconstruction to the HWT algorithm.

For the time variable, different things can be said. For example the EZW algorithm
which has the best performance in image reconstruction has the disadvantage of using
at least twice the time to compress/decompress compared with the other algorithms.
The second slowest algorithm is SVDT followed by the SPIHT algorithm.
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ithms are DCT. HWT, D4WT in that order. DCT is the fastest al-

The fastest algori ¢ S
s a good reconstruction of the image. we can

gorithm and if we observe that it give
understand why DCT is a very important part of the JPEG standard.

Regarding individual textures, those that pose more problems for the compression
algorithms are the directional texture D15, the periodic textures D1 and D101 and the
random textures D2, D9 and D86. For the evaluation by class we can say that for the
case of directional textures the best algorithm is EZW followed by SVDT. The poorest
performance is presented by the HWT algorithm. For periodic textures the best algo-
rithm is EZW followed by DCT. The poorest performance 1s presented by the SVDT.
Finally for the case of random textures the best algorithm is the DCT followed by the
SVDT. The poorest performance is presented by the HWT.

The results obtained for the case of 0.1 bit rate are shown in table 4 for directional

textures, table 5 for periodic textures and table 6 for random textures.

Table 4. Dircctional textures average and standard deviation results for bit rate 0.1.

Average
C":{: v MSE PSNR | Frobenius | Norm2 z::’z:
DCT 3967.4880 | 14.8655 0.3799 0.2496 1.172
HWT 6690 10.1215 0.5935 0.5041 1.88
SVDT | 2819.9901 | 16.3922 0.3537 0.2215 5.8
DIWT 1760 16.2352 0.2990 0.1733 3116
EZW 2590 14,5630 03813 0.2500 6.616
SPIHT 1430 17.4993 0.2596 01031 5232
Standard daviaion
DCT 21006320 | _4.4649 0.1793 01705 0.1285
HWT 35335941 1.6230 0.0577 0.0802 0.1923
SVDT 33287143 6.5911 0.2205 0.1986 02318
DIWT 899.0717 2.5749 0.0655 0.0867 0.1152
EZW 1405.9375 2.6184 0.1755 0.2067 0.5896
~—SPIHT | 10188797 3.2087 0.0659 0.0802 02783

Table 5. Periodic textures average and standard deviation results for bit rate 0.1.

Average
Compression S Time in
a’;:m.”m MSE PSNR Frobenius Norm2 e onde
~DCT __| 4950 11.3217 0.4815 0.3753 1.1808
“HWT | 8490 8.7890 0.6235 0.5396 1.842
SVDT 5673.289 12.68 0.4550 0.3684 9.884
D4WT 2003.4994 13.3643 0.3576 0.2779 3.072
EZIV 3300 12.9024 0.4068 0.2996 7.006
_ SPIHT 1590 14.2571 0.2934 0.1462 5.278
Standard deviation
DCT 45556807 | 6.4979 0.1606 0.1382 0.2266
HvT 55365457 | 5.3933 0.0540 0.0805 0.2651
SVDT 60316913 | 85941 0.2298 0.1899 0.4086
DAWT 12634135 | 75819 | 02333 0.2585 0.3434
EZW 3556 1362 7.0534 0.2103 0.2248 0T
SPIHT 11031317 | 7.8059 0.0923 0.0614 0.3720
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Table 6. Random textures average and standard deviation results for bit rate 0.1,

Average
C‘;’z’:ﬁﬂ’;” MSE PSNR | Frobenius Normz | Timein
DCT 43451877 133438 04457 0.2277 14956
HWT 8740 9.0543 06464 0.5368 21772
SVDT 4440 12 8528 04538 02351 10 304
DIWT 1371 1854 16 8818 02679 0.0761 3 344
EZW 3130 14 2036 0368 01826 7 1648
SPIHT 1270 17 141 0 2599 0 0509 5613
Standard deviation
DCT 3221.4480 4.6856 0.2273 0.1829 01968
wr 4055253 18705 | 0.0778 0.0576 0.4515
SVDT 3109.3429 39110 0.1973 0.1557 05642
DIWT 367 7127 11482 | ""00675 | 00319 | 02854
EZW 28185531 30621 0.1062 0.0920 05658
SPIHT 236.4950 0.7844 0.0661 0.0145 04867

For our worst test case with results in tables 4, 5 and 6 there are several comments:
First the reconstructed images are obviously reconstructed with a large error. Second,
the relative performance of the algorithms is different compared with the previous test
case. Taking into account the quality of the reconstructed image, the poorest perform-
ance is presented by the HWT. it has the largest MSE and the reconstructed images are
visually different. The next poorest performance is DCT and SVDT respectively. The
best performance is given by SPITH followed by DAWT and EZW in that order.

With respect to time, the best algorithm is the DCT follow by transform algorithms
HWT and D4WT. The poorest performance is presented by the SVDT algorithm. In
this case we observe that the time needed to compule using less singular values is lar-
ger instead of smaller than the first test case. Next in speed are the algorithm SPIHT
and EZW algorithms, in that order. Regarding individual textures, those that present
problems for the compression algorithms are the directional textures D49 and D15, the
periodic textures D55 and D56 and the random textures D62 and D7. For the evalua-
tion by texture class, the best algorithm for directional textures is SVDT but it has the
problem of time and the poorest is HWT. For periodic textures the best is SPIHT and
the poorest is HWT. For random textures the best is DCT and the poorest is HWT.

4. Conclusions

In this paper we present the results obtained from a performance comparison of six
lossy image compression algorithms. The algorithms were compared using texture
images and measuring by two variables, the quality of the decompressed image and the
time used for the full cycle of compression/decompression on an image. A perform-
ance ranking of the algorithms was obtained for each of three texture classes, and we
found that this ranking varies with the bit rate and the image nature. These results are
important because they are the first that take into account texture, one of the basic cues
for image recognition.
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work we intend to make a similar analysis measuring other components of
images in order to give a final and more accurate criterion for the selection of an algo-
rithm to compress an image and in order to build a feature pfcsen.'mg image coder. The
goal of the future coder will not be to minimize an obj!.:cuve distortion measure at a
given bit rate, but to preserve important features of the image. The measure of image

quality will be taken with a patten recognition process.

In future
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